Chess blog for latest chess news and chess trivia (c) Alexandra Kosteniuk, 2012
Hi everyone,
Hi everyone,
There is a scientific reason that could explain some of your losses at chess. Two researches have come up with an interesting game theory idea just released on phys.org.
Dr Tobias Galla from The University of Manchester and Professor Doyne Farmer from Oxford University and the Santa Fe Institute, ran thousands of simulations of two-player games to see how human behavior affects their decision-making.
Dr Tobias Galla from The University of Manchester and Professor Doyne Farmer from Oxford University and the Santa Fe Institute, ran thousands of simulations of two-player games to see how human behavior affects their decision-making.
In brief, it's what chess players often come up with: They lost because their opponent made a move that they did not expect even though the move was a weak one!
In simple games with a small number of moves, such as Noughts and Crosses the optimal strategy is easy to guess, and the game quickly becomes uninteresting. However, when games became more complex and when there are a lot of moves, such as in chess, the board game Go or complex card games, the academics argue that players' actions become less rational and that it is hard to find optimal strategies. This research could also have implications for the financial markets.
Many economists base financial predictions of the stock market on equilibrium theory – assuming that traders are infinitely intelligent and rational. This, the academics argue, is rarely the case and could lead to predictions of how markets react being wildly inaccurate. Much of traditional game theory, the basis for strategic decision-making, is based on the equilibrium point – players or workers having a deep and perfect knowledge of what they are doing and of what their opponents are doing. Dr Galla, from the School of Physics and Astronomy, said: "Equilibrium is not always the right thing you should look for in a game."
"In many situations, people do not play equilibrium strategies, instead what they do can look like random or chaotic for a variety of reasons, so it is not always appropriate to base predictions on the equilibrium model."
"With trading on the stock market, for example, you can have thousands of different stock to choose from, and people do not always behave rationally in these situations or they do not have sufficient information to act rationally. This can have a profound effect on how the markets react."
"It could be that we need to drop these conventional game theories and instead use new approaches to predict how people might behave."
Together with a Manchester-based PhD student the pair are looking to expand their study to multi-player games and to cases in which the game itself changes with time, which would be a closer analogy of how financial markets operate. Preliminary results suggest that as the number of players increases, the chances that equilibrium is reached decrease. Thus for complicated games with many players, such as financial markets, equilibrium is even less likely to be the full story. (Complex dynamics in learning complicated games, by Tobias Galla and J. Doyne Farmer, PNAS, 2013.)
www.chessblog.com
Also see her personal blog at
www.chessqueen.com
Don't miss Chess Queen™
YouTube Channel
www.chessblog.com
Also see her personal blog at
www.chessqueen.com
Don't miss Chess Queen™
YouTube Channel
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.